skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagarajan, Ramaswamy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study aims to establish a systematic approach for characterizing recycled polyolefins of unknown composition, with a specific focus on predicting their performance in film extrusion. We explore various characterization techniques, including differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheometry to assess their effectiveness in identifying the polyethylene (PE) fractions within polypropylene (PP) recyclates. By integrating experimental data with modeling techniques, we aim to provide insights into the predictive capabilities of these techniques in determining processing behaviors. The research highlights the superior fidelity of DSC in predicting the relative fraction and type of PE in a PP recyclate. FTIR is also identified as a high‐fidelity approach, albeit requiring application‐specific calibration. TGA, capillary, and oscillatory rheometry are recognized for their ability to distinguish between grades of recycled polyolefins but provide aggregate behaviors rather than detailed constituent information. 3D flow simulation of the cast film extrusion investigated the effect of the viscosity characterization method, non‐isothermal assumption, and process settings but could not fully replicate the observed variations in the cast film processing of two industrial polyolefins with similar melt flow rates and viscosity behaviors. This underscores the practical challenge of predicting processing issues prior to actual processing, necessitating reliance on reliable instrumentation suites and human expertise for diagnosing and remedying variations. HighlightsTwo industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.DSC and FTIR provide reasonable approaches for identifying constituent materials.Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities. 
    more » « less
  2. Introducing facile regenerability into adsorbent materials can potentially increase sustainability in water treatment systems enabled by extended use. Herein, we detail our recent syntheses of dynamic nanostructured worm-gel materials and their implementation as regenerable adsorbents for water treatment. Photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA) was employed to synthesize various polymer nanostructures, including dispersed spheres, worms, and vesicles, and nanostructured worm-gels, via the synthesis and simultaneous in situ assembly of BAB triblock copolymers. Two dynamic, disulfide-functionalized macroinitiators (SS-MI-1 and 2)with different degree of polymerization and one nondynamic macroinitiator (CC-MI) were synthesized via polymerization of oligo(ethylene glycol methyl ether methacrylate) (OEGMA). PhotoATR-PISA was then implemented via the chain extension fromSS-MI-1, 2 and CC-MI with glycidyl methacrylate (GMA) or benzyl methacrylate (BMA) forming BAB-type triblock copolymer nanoparticles in situ. The final morphology in PhotoATR-PISA was influenced not only by conventional factors such as solids content and block DP but also by unimer exchange rates yielding arrested, nanostructured worm-gels in many instances and arrested vesicle-gels in one instance. These PISA-gel materials were implemented as adsorbents for phenanthrene, a model compound registered as a priority pollutant by the US EPA, from aqueous solutions. The chemical tunability of these materials enabled enhanced, targeted removal of phenanthrene facilitated by π−π interactions, as evidenced by the increased adsorption capacities of PBMA-based PISA-gels when compared to PGMA. Furthermore, the dynamicity of disulfide worm-gels (SS-WG) enabled disulfide exchange-induced regeneration stimulated by UV light. This UV-responsive exchange was investigated for POEGMA macroinitiators as well as dissolved triblock copolymers, dispersed nanoparticles, and SS-WG materials. Finally, the regenerability of the PNT-saturated SS-WG adsorbents induced by UV irradiation (λ = 365 nm) was examined and compared with control worm-gels absent of disulfides, demonstrating enhanced recovery of adsorption capacity under mild irradiation conditions. 
    more » « less